Combining lectin microarrays and machine learning will be a trend?

A group from Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, China has reported about employing a combination of lectin microarrays and machine learning to identify alterations in serum glycopatterns with a special emphasis on its early detection.

In recent years, the number of Chinese papers has increased rapidly, and the probability of finding Japanese papers has decreased considerably when searching for papers.
This work from China proposes a method that uses the glycan profile of blood glycoproteins as a serum biomarker combining machine learning with lectin microarrays for the early detection of non-alcoholic fatty liver disease.

However, this type of method was already developed by us about six years ago, and although the target was different from the above paper, its excellent effectiveness has been demonstrated.
The following website explains that it is possible to characterize target cells quite accurately by using deep learning and lectin microarrays for glycoproteins secreted by cells into the culture media.
Combining Deep Learning and Lectin microarrays